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1 ABSTRACT

We derive the asymptotic distributions of the sample mean,

autocovariances and autocorrelations for a time series whose autocovariance

a

function Y, has the power-law decay Y, ~ Ak 0, A>0, 0<ac<1, as

k
k + ©, The results differ in many respects from the corresponding results for
short-memory processes, whose autocovariance functions are absolutely
summable. For long-memory processes the variances of the sample mean, and of
the sample autocovariances and autocorrelations for 0 < a € v&, are not of

1

order n” asymptotically. When 0 < a < v& the asymptotic distribution of

the sample autocovariances and autocorrelations is not Normal.

AMS (MOS) Subject Classifications: 62E20, 62M10
Key Words: ARIMA process, asymptotic distribution theory, auto-
covariance, autocorrelation, fractional differencing, long

memory, mean, time series

Work Unit No. 4 (Statistics and Probability)

*Institute of Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford,
Oxon 0X10 8BB, England.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.




[ B e B gt A Jaye e s S~ o ¢ A a0 WRR- AR MARC AR BASAb pih Ml o @ aed Brit gt B W
P

SIGNIFICANCE AND EXPLANATION
Persistence, or long memory, is the presence in a time series of
- significant dependence between observations a long time span apart. Correct

identification of long memory in an observed time series can greatly improve -

AN IPP )

the accuracy of long-range forecasts of the series, and can give a better

’

I

Cre
‘alaty

understanding of the physical processes which generate the observed series.

The long-memory phenomenon has been observed by researchers in a number of

[
P
.

Al ol a4

areas of application including economics, geophysics, hydrology and

B LR
) .

meterology. ™

Identification of long memory in an observed time series y4,...,y, is

PO

often based on the failure of the sample autocorrelations

n-k .
rk = Ck/CO, Ck = n-1 )1 (yt - §)(Yt+k - ;{), k = 0,1,2,---,!\ -1 ’ "_ ‘:.
t= L

where y = (yy + «++« + yp)/n is the sample mean, to die away rapidly to zero oL

as k increases. Because r, is a random quantity its probability

distribution must be known before accurate inferences may be drawn concerning
it. “This report derives the distributions of the sample autocorrelations and
related quantities when the sample size ,nc’is large, thereby facilitating the

diagnosis of long memory in an observed time series.

4
\
N

N

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




ASYMPTOTIC DISTRIBUTIONS OF THE SAMPLE MEAN, AUTOCOVARIANCES
AND AUTOCORRELATIONS OF LONG-MEMORY TIME SEFIES

J. R. M. Hosking*

1. INTRODUCTION

Let (Yt : t € 3] be a second-order stationary time series with mean Ey, = U and
autocovariance function Yy, = E((yt WYy - k)}. We say that {Yt} has short memory
o
or long memory according as to whether X IYk‘ is convergent or divergent. Most of the
K==

theory and practice of the analysis of stationary time series is concerned with short-

memory series, but the use of long-memory models has been considered by a number of

authors, for example Mandelbrot and wWallis (1969), Granger (1980), Granger and Joyeux
(1980), Hosking (1981, 1984), Jonas (1981), Janacek (1982), Geweke and Porter-Hudak (1983)
and Li and Mcleod (1984). The models considered by these authors mostly have
autocovariance functions which satisfy
N~ A% A>0, 0¢cact, as k+e. ()

In this report we consider the large-~sample properties - mean, variance and asymptotic
distribution - of the sample mean, autocovariances and autocorrelations of long-memory time
series. For a time series with an autocovariance function of the form (1) and a Normal
marginal distribution, our results are complete and are summarized in Table 1.

Most of the results in Table 1 - perhaps all of them - are valid under wider

conditions than Normality of the time series. In our proofs we shall typically assume that

{Yt} has the representation

Ye = W+ ) Via (2)
t sbo 1

where

wj~v;B,\a>0, Yo <B <1, as 3+ (3)

*Ingtitute of Hydrology, Maclean Puilding, Crowmarsh Gifford, Wallingford, Oxon 0X10 8RB,
England

Spongored by the United States Army under Contract No. DAAG29-80-C-0041.
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TABLF 1. Asymptotic bias, variance and distribution of sample statistics for a
Normal time series with autocovariance function (1): n is sample size.

Order of magnitude of: Asymptotic
Statistic Range of a bias variance Distribution
-a
mean 0 <ac< 0 n Normal
3 1 -a -2a " 3 3 L]
autocovariances 0 <cac<'h n n modified Rosenblatt": cumulants
defined by (13)-(16) below
- -1
and a = b& n"® n log n Normal
. 1 -a -1
autocorrelations { < a < 1 n n Normal

and {at : t € 2} is a white-noise process consisting of independent and identically

distributed random variables whose distribution we shall require to satisfy any of the

following conditions:

Ea2 = 02 <® ; (4a)
t
Ea: = 04(3 +K) <> ; (4b)
Eat < ® for all positive integers m ; (4c)
2
at ~ N(O,U ) . (44d)

Some of our assumptions are unnecessarily restrictive but are imposed for convenience of
presentation; some relaxations of them are considered in Section 7. When (2) and (4a)

hold, (1) is a consequence of (3), as we now demonstrate.

Lemma 1.

Suppose that the time series (yt} satisfies (2), (3) and (4a). Then the

autocovariance function Yk of (yt} satisfies (1), with a = 28 - 1 and

A = o2vir(28-1)T(1-8)/1(8).

Proof. Let Wj = vl (§+1=-8)/T(3+1), 3 =0,1,2,... . Then {wj} is a bounded positive

decreasing sequence and Yj ~ \)j-B ~ wj as j * =, Thus

(i) there exists C > 0 s.t. ij| < C?j, 3 =0,1,2,004:

(ii) ¥ € > 0 there exists J s.t. Jj ? J ==> (1 - e)Wj < wj < (1 + c)Wj.




Mo

4

¥ Now

o«
2 .
From (2) and (4a) we have Yk =0 )E ¥ 4k

120 J

- 22 TOZBIT(ken-8) ¥ 1 T(4#1-8) F(jrke1-8) T (xet)
j j+k T(k+1) 320 T(j+1) T(1-8) F(k+1-B) T (j+k+1)

- g2y2 TO=BIT(k+1-8)

T(k +1) F(1-8, k+1-8; k+1; 1)

_ 42,2 [(28=1)T(1-8) I'(k+1-B)
T(8) T (k+8)

~ g2y r(2g-1)r(1-g) , 28-1

T(8) as k* @

here F(a,B;Y,x) is the hypergeometric function. Thus for all € > 0 we have

W =Tl < AT v 1 L N T e ) b = ) Y]
kT ok sho VaVam! T2 TaTand T L Hy¥ane T L T e
2. 28-1_, 2 2, 28-1 2. ¢
< o'k J(c“ + 1)V0Vk + 0k (2¢ + €°) jEJ vjwj+k .

This expression can be bounded by a constant multiple of € for k sufficiently large,

28-1 B-1

since the first term is O(k ) * 0 as k + » and the second term is

2B-1
rk

-Yk) = O(k

23-1r

bounded by (2¢ + €2)k with k being bounded in k. Thus Y, ~ T, as

k + ® and the result follows.

The converse of lemma 1 is not true. For example if (2) and (4a) hold and wj =0

if j = 2™ for some positive integer m, VY, = j-e otherwise, then it is easy to show

3
that (1) is still true.

An outline of this report is as follows. In Sections 2, 3 and 4 we derive the
asymptotic properties of the sample mean, autocovariances and autocorrelations
respectively. The cumulants of two non-Normal distributions arising from the asymptotic
theory of Sections 3 and 4 are investigated in Section 5. 1In Section 6 we apply our
results to the family of fractionally differenced ARIMA(p,d,q) processes, a particularly

widely known class of long-memory time series. Section 7 contains some indications of

possible extensions of our results.

-3~
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2. THE SAMPLE MEAN
The sample mean of a realization ryt it = 1,.00,n}

n

- -1

v =n Voy

- t
t=1

and has mean U and variance

|
=1
'
¥
N
N~

=% u=1 = t

b SlCW L Sl it Gk SO S e S

{n - t)‘(t + nyo‘ .

MY SN ped N S S g

of a time series is

(5)

Lemma 2
Let fyt :t=1,...,nt be a sample from a second-order stationary time series whose
covariance function Yy satisfies (1). Then
20"

v o~ -+ .
var y (1=a)(2-a) as n ”

Proof. Write (5) as

- -t =1 ¢ ty -1
var y = 2n en Vof1 == +n v .
n t 0
t=1
As n *+ e« the sum n-1 Vo1 - t/n)navt converges to the integral
! -a
f(1r = et at =y /(1 - a2 - a)d .
0
Since n_1Y0 =oln™™) as n » = the result follows.

Theorem 1.

Suppose that the time series fyt¥ satisfies (1)-(3) and (4a). Then
n™2(3 = w) - N(0,22/7(1 = a)(2 - a)}) as n o+ @ .
=1+
Proof. Since Mj = 0(J) “ “)/2) with « > 0, we have \ W? ¢ m», PFurthermore, from
Lemma 2,
-4~
e T R T

M
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2-a

n
- 2 2\n - - A
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The result now follows from Theorem 18.6.5 of Ibragimov and Linnik (1971).

Note. The proof of their Theorem 18.6.5 given by Ibragimov and Linnik (1971) is defective,

but can easily be corrected, as indicated in the Appendix to this report.

j Remark. Theorem 1 is also valid if {Yt} satisfies (2) and (4a) and has an autocovariance

function Y, with Y, <=, Yy =~ A% A<0, 1<¢ac<2. The proof is unaltered.




3. SAMPLE AUTOCOVARIANCES

We define the sample autocovariances of a realization {yt :t=1,...,n} of a time

series by

-9y, =¥, k=0,1,000,n = 1.

-1
e, =n )} Uy 4k

t

Other definitions of sample autocovariance have been used by some authors, but the more
common variants, for example those defined by Anderson (1971, chapter 8), differ from ¢,
by quantities of stochastic order Op(n-1) and have asymptotic properties identica. to

those of ¢y . We also define

c. =n (y, = u)(yt+k -uw), k=20,1,.00,n =1 ;

these quantities are estimators of Yk when the sample mean is known. For short-memory
processes the asymptotic distributions of ¢, and Ek are identical. For long-memory
processes with autocovariance function (1) this is only true if DQ < a< 1. When

0 <a < EQ , replacement of Y by ¥ has an effect which is not negligible even in large
samples, for it introduces a bias into the estimated autocovariances which is of the same
order of magnitude as their standard deviation.

Theorem 2.

Let (yt} be a stationary time series satisfying (1). Then the asymptotic bias of

¢, 1is given by

-2An-a
B "W OG-z -a 2 "> (6)

If in addition (yt} satisfies (2), (3) and (4b), then the asymptotic covariance of the

Cx is given by

2A2x2n'2“ if 0<ac<l , (7a)
2 -1 _1
cov(ck,cz) ~4¢ 43°n 'log n if a=%, (7b)
a
n"{) (Y Y Y Y ) rxry. Y} if VB <a <1 (7¢)
s g+k=2 s+k s=£ k' 2 2 ’

g==0m

where X, is as defined in Theorem 3 below.

-6-
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Proof. To find the bias of Cx we write

k k
~ - 2 -1 - ) '
c, =c = (1 +k/m)y-w +n (y-wl) (y, - uw) + 11 (Ypopsr = ml . (8

kok =1 t
-1 - -
The first term on the right side of (8) has expectation Yx + 0(n '), the second term is . @ 1
of order Op(n-a) and has expectation =2in "/{(1 - a)(2 -~ a)} + o(n™") by Lemma 2, and .

Adnalh &

the third term is of order Op(n-1-“/2) and is asymptotically negligible. Hence we deduce -

v

(6).

To establish (7) we consider the cases 0 < a < 1/;_, , a =1/2 and 1/2< a <1 ) ._ p
separately. ’ ;
First suppose 0 < a < 1/2 + The covariance of ¢, and c, is given, apart from terms :
of order n~1, by Anderson (1971, p. 452, equation (65)). The expression involves terms , .' 4

arising from the variance and kurtosis of 'atl. The variance terms are the same as if .
fat} were Normally distributed and sum to lexzn-za asymptotically, as shown in Theorem ) 1
3 below. To prove (7a) we must show that the kurtosis terms make an asymptotically ?
. negligible contribution to cov(ck,c'). These terms are » . )

n o

-2 D n e -1
xn YooY (Y e, @ " - n YO ¥ wow, . w W .
-t i+f+u- - +k itu-t itf+ve
o1 wet gug b itk'itu-t'isteu-t B A R
(9)
-4 2 -2 b Bnp % \
pL IR S L DUL TP e e UL D A L SO R PRI
s=1 i=0 s=1 v=1 i=0
-2
where vhj =0 for j < 0. Now since vhj ~ vj as 3 + » we have ||hj| < 'j for all
-R
integers 3j, where '”j =0 if j <O, "0 = C, "j = Cj3 if 3> 1, and C> 0 is a

constant. Note that ”j : j > 0 is a positive decreasing sequence. Thus

-7-
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Thus the Ffirst term of (9) is O(n

that the other terms of (9) are O(n

write

1/2—28) = 0(n

1/2.-28) also.

-1/2-a) - -2a

o(n ).

For example for the second term we

-3 .
AL LY Y gt
tuvi

{Cauchy's inequality)

whence an argument like the above shows that this term

and this proves

™3y
P L L LU Y
tuvi
r /
-3 \ 2 1/2 2 1/2
*l Cr Ll LYY ) T QY G )
4 tuv i
3
: n n
-3 . ¢ 2
: <n” o) (L ong)
L_ t=1 u=1
1 1/4
r’ where he = olt -B) ag t * ®,
b too is of order O(n1/2-28) Thus (9) as a whole is of order o(n-2u)
s
E. (7a).
q Next suppose 1 :1@ . First we consider COV(SK’SQ):
& p. 451)
h 8-

A similar argument shows

we have (cf. Anderson, 1971,

ot Dve Tt A4 Sdn San I Man o) T e i T B T e S St oheun et St et St s e Suouien ot Hhert 2t ais e e 4 gt g
-
.
.
4
| -
P n n - 2 n n w©
- \ Y < n \
In L “ .2 qli“’i*t*k""i*u-twiJ'l'M.x-t' n 2 2 y1w1+kw1+U°tY1+l+u-
t=1 u=1 1=0 t=1 u=1 i=0 y
)
S Y \ - ; "
CaTfn ¥y vl DAL FR IUPR UG ORI 1 N0 0 A FUVEINL FURIUUIN L Oy ]
i t<u i th>u i -4
-2y 2,2 -
< \
Nl 2 ¥ ileeul
tui
n n s «®
- , 172 4 . .
<n? Loy ) ) / () ¥ )1/2 by Cauchy's inequality
. i+]t-ul
t=1 u=1 i=0 i=0
15 2, % 441 n T o4 172
=o)L e )" ) m-o() v,
i=0 i=0 t=1 i=0
1 2 _ T 4
vow ¥4 =001y, o ) ¥, g2z ) ¥ -0t ana
. 1 t i+t
i=0 i=0
n
. 5/2-
L (n - tig, = nlg, - ltg, = otn /2-28,
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RO
n-k n=-2 P

~ o~ -g D2 . . @
covic,,cy) =" ) ) (Yt-uYt-uﬂt-l * YeouskVe-u-2 :
t=1 u=1 L
(10) S

. )
6L VViahige Y pegey) - ]
i=0Q 1
. - 3

- @
The terms involving Yj in (10) yield }
..
_—
- - <
n=k n-% PR
) oy + Y Y ) o

t-u t-u+k-2 t-u+k t-u-2

t=1 us1 4

L

-2 D
~n° ) i Vo Ypoutkot ¥ YemgskTtoy-g) 28 R ]
t=1 y=1 L
= n vy, v ) e ) Ty, Y +y Y )
0 k=L k'L t2u t-u t-u+k=-% t-u+k t-u-%

L
-1 -2 7 2, -1 -1 _
=0 Y Y, , * YY) +2n o ) (n - ey {22%%T + ott” )} (11) e

o"k-2 7 ViVe ot o
)
since Yy~ a2 as k + =, Asymptotically the dominant term in (11) is .

]
207" e ~ 03217 N10g n;  the other terms are asymptotically negligible. The identical N
argument to that used in the case 0 < a < UQ above shows that the kurtosis term in (10) ~}"'1
R

is o(n~1) = o(n'1log n), 8o we have proved that

cov(Z, &) ~ 43n"'log n as n =, (12)

and hence that Zk is of stochastic order n'1/2(log n)1/2. Now from (8) it follows that

~ - - 2 - ~
S = S = op(" 1/2) because by lemma 2 (y - W) = Op(n /2y, thus replacement of e

by ¢, has an asymptotically negligible effect and (7b) follows from (12).
Finally when BQ < a <1, the sum of squared autocovariances, XYi, is convergent.
Thus the spectrum of the process is square-integrable and (7c) follows from the central

limit theorem of Hannan (1976).

T v ey

-9-
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Theorem 3
Let (yt} be a time series satisfying (1)-(3).
(1) If 0 ¢a <% and (4d) holds, let C, = n®(c, = v,)s then as n + =,

Cx = Cl P> 0 for k # & and the common limiting distribution of the C, has rth

cumulant
k= A25 Nr - ix (13)
r r
where
K, = -2/{(1 - a&)(2 - @)}, (14)
1 1
K, = £ ...£ g(xq,%3)g(xg,%x3) e eagxp q,x ) g(xy,xq)dxq.00d%,, 2, (15)
with
Hey) = Ix= vl = "% (e 4y e 1T 01-0) ¢ 2/(0ma) (200} . (16)

(ii) If a = b@ and {(4d) holds, let Cj = (n/log n)1/2(ck - Yk); then as n + o,
Cx - Cy 2> 0 for k # £ and the common limiting distribution of the ¢, is N(0,4A2)- ,i"'

(ii1) If %5 < a < 1 and (4b) holds, let Cx = n1/2(ck - Yk): then as n + ® any - '
finite subset of the C, has a limiting distribution which is multivariate Normal with

mean zero and covariances given by (7c).

Remark. Rosenblatt (1979) proved the corresponding result to Theorem 3(i) for the

aaasal ey .

asymptotic distribution of the autocovariances Ek calculated assuming the mean u to be . ¥
known. The limiting distribution is the same as that defined by (13)-(16) except that the ‘;“}_{
function g(x,y) 1is replaced by ;(x,y) = Ix ~ yl-a. These distributions are further - :';
o]
discussed in Section 5. R
L )
Proof. (i) We adapt Rosenblatt's (1979) proof of his proposition to the case in which the N
sample mean is estimated. Write zén) =Y < § so that j;:}:
._"~-_.«1
- e - '*
—_— ntk z(n)z(n) L
Kk = .
=1 t t+k o
-
B -1
-10- !
. o |
1
5
9
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2(n) = (z(").o-zén))T has a degenerate multivariate Normal

For fixed n, the vector 1

distribution with mean zero and covariance matrix Q = (w't), where

_. n - n 2 non
ot "Vger TP L Ygumm o L Yt ) L Yyey
u=1 u=1 u=1 y=1

and rank £ = n - 1, The joint characteristic function of Ck, k =0,1,..., , can be

written as |I - 21LTAL|'1/2 where = LLT, L is an n X (n - 1) matrix of full

column rank (Searle, 1971, p. 68), and

-y

A=al ) gk
k=0

where
0 1 0...0
J = 0 0. 1. .
0o 1
0 0
. For r » 2, a typical rth-order cross-cumulant of this distribution looks like
r~1 ar-r 2 E
2 (r = 1}In w w cee W w
3,51 3 =1 Jytagedy 3540503, Ip-1¥0poqedp 37000y

where a1,...,ar take on values 0,1,...,2. A8 n + @ all these rth order terms have the

same limit, this limit being (15) with
—a 1 _ 1 - 11 -
g(x,y) = Ix - y] - f Ix - u| du - f |y - yl du + f f |u - vl dudv . (17)
0 0 0 0

It is trivial to show that (16) and (17) are equivalent. That EC, * «, follows from

Theorem 2. To complete the proof we must show that the cumulants (13)-(16) define a unique

distribution. We have by Cauchy's inequality for integrals that
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'KZr’ < (;1 ee ;1 qz(x1,x2)92(x3,x4) e gz(xzrd,xzx_)dx1 e dxzt‘1/2 . _
(;1 cen é1 gz(xz,x3) e qz(er_z,xzr_1)92(x2r,x1)dx1 vee dxzr\‘/2 . %
3
and similarly that ;; ::i
'K2r+1| < K;-1/2 L1 31 é1 92(x1,x2)gz(x2,x3)dx1dx2dx3 . t.?~.;
o

Noting that g(x,y) - Ix - y|-u is bounded for 0 < x < 1, 0 <y < 1 we can use
Rosenblatt's (1979) equation (19) to show that for some constant C, 'le < cx§/2 for T ;;

all r. Thus the joint characteristic function of Cy,Cy,...,Cy is analytic in a

neighbourhood of the origin and the distribution defined by (13)-(16) is unique.
(ii) when « =1@ the statistics ¢, and zk are asymptotically equivalent, as

shown in the proof of Theorem 2, so to prove Theorem 3(ii) it is sufficient to establish
/2

the asymptotic joint Normality of Ek = (n/log n)1 (¢, - Yk)' k =0,1,.v.,%. By

k

following the approach of Rosenblatt (1979, p. 127) we see that a typical rth cross-

cumulant of the joint distribution of Eo,...,E, looks like

r/2 ? ?

J1=1 Jr=1

o a1 -
u. * 27 Hr - 1)1(n log n) Y. LY. . ees Y Y. .
r - - - -
I4r4735 3,470, DAL M TS

where Mgreeesa take on values 0,1,...,%. We will show that for r > 3 these cumulants

tend to zero as n * ®. We take Ay = eee =@ = 0 for convenience but our proof is also

. valid, with minor modifications, when the “j are not all zero. By Cauchy's inequality we
.
b have

p.

b.

b

g n oo,

¢ Tu ] < 25" Nr-11(n log m)7F/2 Y L0V vE | lvj -3 (v, _o teeddy, o 1o 18
1 =1 j =1 9732 12733 I37I, Fr-1"9r
- 1 r
S
s
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Now vj-O(j"/z) as 3+ =, sofor 1¢4¢n
n j{‘ n=3
Y odv,il=vy ¢ Vo v 1+ YV v |
gmq 173 e T
(19)
<+ 32 4 (- ¢ 3en"? = 0nV?)
3
for some constant C > 0, since y 172 . 0(31/2), similarly
i=1
n n n=j
)yi'j-y§+$vi+31§
i=1 i=1 i=1
(20)
€ c'f1 + log J + log(n-3j)} € 3C'log n = O(log n)
>
for some constant C' > 0, since ) 4i~' = O(log j). Summing (18) over b EPEERTS
i=1

successively and using (19) and (20) we have

up = (n log n)7F/2 « 0(log n) + o(n{F"2)/2)en = o((1log n)1"F/2)

and g0 u, * 0 for r > 3. Thus the Ek' and by asymptotic equivalence the ¢, also,

are asymptotically jointly Normal and Theorem 3(ii) follows, the variance of the limiting
Normal distribution of Cj being obtained from Theorem 2.

satisfies the conditions of the central limit theorem

(111) when ¥ <a <1, fy}

of Hannan (1976), as remarked in the proof of Theorem 2 above, and Theorem 3(iii) follows

in consequence.

~13-

L:',{ O

ER N N WY T

P
mla

S




2 - - -2a 1
2(A/¥g)7(1 = P ) (1 = Py IR N if 0 <ac<ly, (21a)
3 - 2,, . - -1 o1
: COV(rk'tl) 4 4(X/Yo) (1 pk)(1 pl)n log n if '] A . (21b)
a
[ 1y 2
- + - -
- n {sz_. (psps+k-l psps+k+l + 4°kplps zpkpsps+£ Zplpsps+k)} (21c)
if BKeca<ct,
h
.
; where K, is as defined in Theorem 3.
>I
- R
p R
h. M P '.
b‘ ) .'-. .
b. 14 .s . ." -.
3 -14- S
i el
- & i
]
i - - "_1
3 N,
! _ .
. R
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4. SAMPLE AUTOCORRELATIONS

The autocorrelations of the time series {yt) are the quantities pk - Yk/yo, and

are estimated from an observed series {yt :t=1,,..,n} by the sample autocorrelations v
n-k n S
r, = ) (y - ¥y -9/} (y, - ;)2 = c /. . R
x t t+k t x’%o L.
t=1 t=1

As with the sample autocovariances, a number of asymptotically equivalent variants of )y
may be defined. The asymptotic properties of sample autocorrelations are qualitatively
similar to those of sample autocovariances. For long-memory time series with
autocovarjance function (1), the same trichotomy as in Section 3 applies: for

b& <a <1, r, has the "standard asymptotic behaviour” of asymptotic Normality and

variance of order n°11 for a -14 ¢+ Iy is asymptotically Normal but with variance of . j
order n 'log n; and for 0 < a <V, r, has variance of order n"?®  ang an asymptotic - ;ii;;
distribution which is not Normal. . ?
Theorem 4 g
let {yt} be a time series satisfying (1)-(3) and (4b). Then the asymptotic bias and |
covariance of the ry, k 2> 1, are given by -7 ®

-2(1 - p.)
k A -
i Sl S SR T R B PO

[
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Proof. wWrite rp - oy = (ck - okco)/co- The results then follow from Taylor expansion of
the Cx about their expectations Yo using Theorem 2 above and the techniques of Fuller
(1976, Section 5.4).

Theorem 5

Let ‘yt1 be a time series satisfying (1)-(3).

(1) If 0 <a <% and (4d) holds, let Ry = n™(r, - 0,)/(1 -0 ); then as n =+ =,
Ry - Rl B> 0 for k # ¢ and the common limiting distribution of the Ry has rth
cumulant Y;rtr where K is defined by (13)-(16).

(11) If a =% and (4d) holds, let R, = (n/log n)/2(r; - 0, )/(1 = 0,)s then as
n+®, R~ R, ) for k # 1 and the common limiting distribution of the Ry is

N0, 40/v %)

(ii1) 1If D& < a <1 and (4a) holds, let Ry = “1/2(tk - ok)a then as n + » any
finite subset of the Ry, k ? 1, has a limiting distribution which is multivarjiate Normal
with mean zero and covariances given by (21c).

Proof. First suppose that 0 < a <'3. Writing r - o = flc, = v)) = p (e = vy)}/c,
we have

Ry = cg ' (Cy = 0,C)/(1 = o)) (22)
where Cy, C, are as defined in Theorem 3(i). From that theorem it follows that
Cx = 0,Co has the gsame limiting distribution as (1 - °k)c0 and this together with the
result that ¢q * Yo almost surely (Hannan and Heyde, 1972) implies that R, has a
limiting distribution which is identical to that of v;‘co and hence has rth cumulant

-r

Yo (r where . is defined by (13)-(16). From (22) we also have

Rk - Rl

-1
=cg 1(C, = C)/(1 = n) - (€, = C /(1 = p)}

and since Cy - Cq B> o, Cy = Cy B> 0 and co ~> Yq almost surely this implies that
Ry = R, =B> 0. This completes the proof of (i).
The proof of (ii) is almost identical to that of (i): only the limiting distribution

of Cy is different.

= 0(3727?%) and that % - 2R ¢ =1. Thus

To prove (iii) we note that j'/zmi

Tj1/2ti ¢ ® and (iii) follows from Theorem 3 of Hannan and Heyde (1972).
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S. CUMULANTS OF NON-NORMAL ASYMPTOTIC DISTRIBUTIONS OF SAMPLE AUTOCOVARIANCES AND

AUTOCORRELATIONS

The non-Normal asymptotic distribution of sample autocovariances and autocorrelations,

derived in Theorems 3(i) and 5(i) above, is similar to the limiting distribution of

na(;k =Y, ) for a process satisfying (1) with 0 <a <y, obtained by Rosenblatt
(1979). Rosenblatt's distribution has rth cumulant
o=t e - (23)
r r
where
I, =0, (24a)
! ! a Q a a
1, = f ...f |x1 - x2| |x2 - x3| ...'xr_1 - xrl |xr - x1| dx1...dxr, r> 2. (24b)

It is of interest to evaluate some of the lower cumulants of this distribution and of its
modified version with cumulants defined by (13)-(16), in order to see how far from Normal
these distributions are. The following theorem gives some analytic expressions for the

integrals which define these cumulants.

Theorem 6.

Let I, be defined by (24) above and K, by (14)-(16) above. Let
! ! -a -a -a
Jpeq = g ...g |x1 - x2| lx2 - x3| ""xr-l - xrl dXgeeedx T = 12,00,
t.e. J._4 is similar to I, but with the term Ixr - x1|-a omitted from the
integrand. Then
I, = v/{(1-a)(1-2a)} ,
13 = a2 (1-a)/{(2-3a)T(3~20)}
3 2
I = 6l (1-a) . 1 1,a,2=2a ~ 2l (2-2a) 1,a,a J ; (25)
4 - - - -
(3-4a)T(4-3a) (1—3)3(3-40) 32 *2-a,3-2a (1-0)3T(4-40) 32 '2-a,2-a
Ky = I, - 23, + J° (26)
2 2 2 1
-16=
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Ky = I3- 335+ 33,3, -3}, (27)
Ky = Iy - 43, + 8333, + 233 - 4302 + 5%, (28)
Iy = 2/{(1-a)(2-0)} ,

3, = 2r¥(1-a)/T(4-2a) + 2/{(1-a)%(3-20)} ,

5. .20 ar?(1-a) N 2 1,a-1,3-2a
3" - —a)(d- - -a,4- .
T(5-3a) ~ (1-a)(4-3a)T(3-2a) (| 13 5 ) 32" 2-a,4-2a
5 - arfii-a) | ar3(1-q) . 2r?(1-a) [1:a-1.4-30)
4 7 "T(e-4a) * (1-ai(5-4a)T(d-3a) ~ [ 7 oo T V32 b 3-2a,5-3a
. 4 12l (1=a)T(3=3a) ; . [1,a,3-20 LT
—a) (3 a5 o 4= R
(1_”3(3_2“”5_4” (1-a)(3-2a)T(6~4a)’ 3°2 '2-a,d4-2a Dot
4 1 1=-a -' -~
+ —_— f t F(1,a72=-a;t)F(a=1,4=-3a;5-3a;t)dt - ‘;_74
(1-a)" (4=3a) 0 Y

8l (1-a)l'(2-2a) 1=

e T3 | ¢t F(1,a12-a:t)Fla=1,3-2a;5-3as¢)dt
0

here F(a,B8;Y;x) is the hypergeometric function and

p. [1/9:8] s LOOI() T T(3+a)T(4+8)
32 Ly, T T@Tey (L) TEHIT(+)

is a generalized hypergeometric function of unit argument (Bailey, 1935).
Proof. The proof, which is tedious but not difficult, is not given in detail. To prove

(26)-(28) we substitute g(z,y) from (17) in (15); the resulting expressions for

r=2,3 and 4 simplify to (26)=(28) respectively. To evaluate the integrals for I,

and J, we break the region of integration into sections of the form :: :l

0 ¢x, < ... ¢x, <1 for ig,...,4, a permutation of 1,...,r, and within each _ _!
1 r NSAER
section integrate over x, ,...,x; in some convenient order. For each integration we RO
1 r S

transform the dummy variable so that the range of integration is (0,1) and use the SO

expressions RN :j

-17=
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1
J 0 - 08 Y = B(a,8) = TlaIT(BI/F(a + B)
0
' e B-1 -y
[ 7701 -6)77 (1 - xt) Tat = B(a,B)P(a,via + Bix) ,
0
1 a=1 B=1 a,Y,s )
[ 5770 - 0 ey, 8reit)at = B(a,B) ,F, [a;;’e]
0 ’

- (Gradshteyn and Ryzhik, 1980, pp. 284, 286, 849). As an example of the method we prove R

-
(25). We have ;::{ J

- x| ax, ax ax dx

S I R I |
A B Y A R PR gt PSP Bad PSR
40000 1 2 2 3 3 4 2773774

and using the symmetry of the integrand under the cyclic transformation _ |
®
x, * x, > x, * x, + x, we can break up the integral as o
a8 ) +8 / + 8 / . (29)
o, 1] x1>x2>x3>x4 x‘>x2>x4>x3 x1>x3>x2>x‘ o)
o
For the first term we perform the successive integrations .
x .
I 1 (x, - x,) 3 x, - x,) %%, = (x, - x,) ' %a(1-a,1a) g
x, xz x, xa) x, x, L =) , :
*3
x [
h- ! 1-2a -a 2-3a ]
. [ txg - xy) (xy = x,) dxy = (x, = x,) B(1~a,2-2a) , )
x4 L
b . 3
b: ! x1 2-4a %
y [ ] x, = x ) %ax, ax, = 1/{(3-4a)(4-4a}} , RIS
- 1 4 45 oY
( 00 )
'~ -
. : 1
. R
$ thus the first term of (29) is 8B(1-a,t1-a)B(1-a,2-2a)/{(3-4a)(4-4a)}, which simplifies to - Y
. >
- the first term of (25). The second term of (29), after the integrations .i
2 :q
: |
{
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x4
- a
( (x1 - X2) (x2 - x3) dx2
X
4
= (x, - x4)““(x4 - %)™ - ay Tr(1,a52 - ar(x, = x,)/(x, = x,))
= (x, = %) " x, - %0701 = @ 7RG, - ar2 = antxg - %y )/(xy = xy))

where we have used 9.131.1 of Gradshteyn and Ryzhik (1980, p. 1043),

x
1
1-2a -a

[ (x1 - x4) (x4 - x3) Fla,! = a;2 a;(x1 - x4)/(x1 - x3))dx4
X3

2-3a ! -a 1-2a

= (x, = xy) [t (1 =-¢) Fla,1 - a;2 -~ a;1 - t)dt
[}
y2-3%g4 - a,2 - 2a) _F [a1-a,2-2a)

= (x, - x

1 3 3’2 2~a,3-3a ’

and

2-4a
(x, = x;) dx,dx, 1/70(3 - 4a)(4 = 4)} ,

yields
8B(1-0,2~20) F [e,1-a,2-2a)
(1-a)(3-4a)(4~4a) 3 2 2-a,3-3a

’

which reduces to the last term of (25) after the application of a transformation of the
3F; function given by Bailey (1935, p. 98). Similarly the last term of (29), after
integrations over x,,x3,X4 and x4 successively, yields the second term on the right

side of (25). This completes the proof.

We have used Theorem 6 to evaluate the cumulants up to fourth order of the Rosenblatt
and "modified Rosenblatt”™ distributions, whose cumulants zr and K, are defined by (23)-~
(24) and (16)-(19) respectively. The results are presented in Table 2 for ) = 1 and

various values of a in the range 0 < a <EQ. The values I,, I; and I, have also

-19-
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been calculated by Mandelbrot and Taqqu (1979) using a less accurate method. It can be A B
seen that the modified distribution is closer to Normal than the original Rosenblatt RN
distribution, and that both distributions approach Normality as a *+ 1/2 . It is also

apparent from Table 2 that the mean of the modified Rosenblatt distribution greatly exceeds

the standard deviation in absolute value if a < 0.3. Thus for a time series with an

- i
autocovariance function (1) and a < 0.3, the vast majority of realizations of the series B
~ e A

will have a sample autocorrelation function which even for large samples significantly R
underestimates the true autocorrelation function of the time series. The use of the sample L :‘1

autocorrelation function to identify such processes may therefore be very unreliable.

Table 2. Standardized cumulants of the Rosenblatt and modified Rosenblatt distributions.

Cumulants defined by (23)-(24) and (16)=-(19) respectively, with X = 1, 1
= 3/2 I 2 _ .
Skewness |<3/n<2 , kurtosis -e4/v<2 3. . ]
.
]
a : 0,02 0.10 0.20 0.30 0.40 0.48 X
Rogenblatt distribution e
Mean 0.00 0,00 0.00 0.00 0.00 0.00
std. dev. 1.46 1.67 2.04 2.67 4.08 9.81 . -
Skewness 2.83 2.77 2.55 2.07 1.18 0.17 L
! Xurtosis 11.99 11.66 10.35 7.63 3.39 0.23 RO
Modified Rogenblatt distribution ]
- Mean -1.03 -1.17 -1.39  -1.68  -2.08  =-2.53
p std. dev. 0.032 0.20 0.55 1.21 2.82 9.12
- Skewness 1.37 1.20 0.95 0.67 0.33 0.04
L Kurtosis 3.53 2.85 1.94 1.08 0.35 0.02
-9
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6. FRACTIONALLY DIFFERENCED ARMA PROCESSES LR

Recent interest in long-memory time-series models has been particularly stimulated by
the family of ARIMA(p,d,q) processes in which the differencing parameter d is permitted .
to be any real number. These processes have been discussed by Granger (1980), Granger and
Joyeux (1980), Hosking (1981, 1984), Geweke and Porter-Hudak (1983) and Li and MclLeod
(1984). It is therefore of interest to apply our previous results to this class of

processes. —

A time series {Yt} is an ARIMA(p,d,q) process if it can be written as
2319y, - u) = 8(m)a, (30) °
whers 4 is the mean of the process, Vd is the fractional differencing operator

(Hosking, 1981, equation (2.1)), ¢(B) = 1 - ¢.B = ... = opnp and 1

E
g,f.

6(B) = 1 - 913 - ese = Oqu are polynomials of degree p and g respectively in the

F backward-shift operator B defined by Byt = Ye-tr and {at} is a white-noise process
: consisting of independent and identically distributed random variates with mean zero and
T variance 02. An ARIMA(p,d,q) process is stationary if 4 <1Q and all the roots of the
. . equation ¢(z"') = 0 1lie inside the unit circle |z] = 1 (Hosking, 1981). It is

straightforward to show, using the approach of Theorem 2 of Hosking (1981), that a

I A B

stationary ARIMA(p,d,q) process with d # 0 has an autocovariance function which satisfies

ozfu(O)l‘H - 24)
k T T TQIT(1 - &

k2*! 4 k@, (31)

L 00N
-

and an infinite moving-average representation (2) with

| (g o2
- Tt £ R
here
2 2
£400) = (1= 8y = oo = 0)/(1 = 4y = e =0 (32)

is the spectral density at frequency zero of the process ¢(B)ut = S(B)at, the "ARMA part"

of the ARIMA(p,d,q) model. We see that for 0 < 4 < t@ the ARIMA(p,d,q) processes are
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stationary long-memory processes whose autocovariance functions have the power-law decay . _
(1) with exponent a = 1 - 24. Thus Theorems 1-5 above are valid for ARIMA(p,d,q) ' ": ;
-0
processes. o
Hosking (1981) suggests that the range of values - ‘/2< a < '/Q may be of particular . i
§
interest when using fractionally differenced ARMA processes for time series modelling. We ) ’ o
can without difficulty extend Theorems 1-5 to cover the range -1/2< d € 0. 1Indeed the - l. f
results stated in Theorems 2-5 for the case ‘%< a ¢ 1 apply also the the case a 2 1, -E
or d <0 1in (30), since the relevant conditions of Hannan and Heyde (1972) and Hannan A_ .:'
(1976) still apply when a 2 1. The equivalent of Theorem 1 for the case -~ 1/2< a < 1/2 in —.j
(30) is given below. ., y
Theorem 7 i;
- p
Let {y,} be a stationary ARIMA(p,d,q) process (30) with o< a <lh. Dpefine ;
£,(0) as in (32) above. ) -4«
(1) 1f -Yhe<ac<l, then n/29F - u) ¥ N0,0%) as n+ =, uhere _ . J
2 - uzfu(O)I‘(l-Zd) . RO
(1+24)F (1+d4)T (1-4)
(11) If a=-Y%, then n(log m” 27 - w) > n(0,6%), where &%= 2 0% (0). " e

Proof. (i) FPor d = 0 this is a standard result (Anderson, 1971, Theorem 7.7.8). The

results for 0 < d <1/2 and -‘/2< d < 0 follow respectively from Theorem 1 and the Remark
thereto. s -

(ii) Now let 4 =1/2 and suppose first that p = q = 0. Then {yt} has variance

Yo = 41!'1 and correlation function oy ™ -1/(4x2 - 1) (Hosking, 1981). We write (5) as
n~1 k
' vary=n2y_ )} § o .
b 0 k=0 =~k k
-
By induction we can show that
T. k ’ -
) py = 12k + 1), .”#
. I==k 1
=22~
3 ] - L
, o
rr “.
P -
3
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’t'b whence it follows that var ;' ~ n-zYo 1/2 logn as n + ®, It is now straightforward to i g
A
verify that {yt} satisfies the conditions of Theorem 18.6.5 of Ibragimov and Linnik 4
. ) (1971) and thence that Theorem 7(ii) is valid for an ARIMA(O,- D&, 0) process. j
1 -1/2 .
b When p and q are not both zero we define the process {xt} by V / xt * a,, 80
that y, = W = {@(B)}-18(B)xt. Now (xt} is an ARIMA(O,- DQ,O) process and, as we have )
; 2= o1 -1/2= w -1_2 .
just proved, its mean x =n (x4 + ... + x,) satisfies n(log x} n => N(0,2n ‘07) .o
- T
as n » ®; while the linear filter {$(B)} 16(!3) which transforms x, into y, - 4 has .{W
a continuous spectrum which takes the value f,(0) at frequency zero. Applying Theorem :'fj
-1/2 = W -1 2 b
18.6.4 of Ibragimov and Linnik (1971) we obtain n{(log n) (y = u) ~> N{O0,2x ¢ fu(O)),
the required result. j
4
p
'. The asymptotic distributions of sample autocovariances and autocorrelations of
b
i ARIMA(p,d,q) processes follow directly from Theorems 2-5. The cases 0 < a < D@, a -BQ
and %5 < a < 1 correspond to Vo <dc< Vo, a= Y4 and 0 < 4ac< V4 respectively.
when - b@ € d <0 the asymptotic distributions are Normal with mean zero and covariances
given by (7c) and (21c), i.e. the same ag when 0 < @& <tQ . The quantities a, A and
X/Y0 occurring in the expressions for asymptotic variances are, from (31) and Hosking
(1981),
a2t (0)r(1 - 24)
u r'(1 - 4)
= 1 = A= = —_—
a=1-2, Tara - Mo L T

The expressions (7c) and (21¢) can also be.simplified for certain processes, as we now
show.
Lemma 3

Let {yt} be the ARIMA(0,d,q) process Vd(Yt - ) = S(B)at with d <V ana

Ea: = 04(3 + K) ¢, Then as n + =

-1_4
covic,,Cg) ~ n O (YA o + YR o) + kY, Y, (33)
and
~ g Viyn 2 * - . o »”
covir, ,ry) ~n (Ya/¥ ) (o o + PR, + 40Py = 20,07 = 2000,) 34)
® -23-




where Y; and p; are respectively the lag-k autocovariance and lag-k autocorrelation of

the ARIMA(0,2d4,g9) process Vzd(yt - u) = O(B)bt with white-noise variance Eb: = 1, and

are given by

k . . i'3 j
i=-q j=-q 7 J
where
g-k
+ - I'(1-4d)T(kx+24d) Yu X )
Yk T TROTO-2aT 020 ¢ Y T L TPk
are the lag-k autocovariances of the ARIMA(0,2d,0) process VZdyt = bt and the MA(q)

process y, = O(B)bt respectively.

Proof. let YX

k be the lag-k autocovariance of an ARIMA(0,d,0) process with white-noise

variance 1. We have (Hosking, 1981)

x _ __ TQ-2a)T(k+d)
k  T(a)T(1-a)T(x+1-a) ’

Y

thus

Y oy = { F(1-24) ;2 ) I'(s+d)T (s+k+d)
s stk T(AT(1-a)" _Z__ T(s+1-a)T(s+k+1-d)

S==®

- T(1-2)T (k+a)T(1-k-d)T(1-42) _ _+
T() T (1=a) T (k+1=2) [ (1=k-2d) ~ 'k '

(35)

where we have used Dougall's formula (Slater, 1966, p. 180) and some manipulations
involving the reflection formula for gamma functions, [(z)l(1-z) = w/sin nz. when

- 02Yx

q =0 we have Y "

k and substitution of (35) in (7c) and (21c) yields (33) and

(34). wWhen gq # 0 we note that

X

2 ? u
=0 A
Y T35

k .
J==q

and a similar substitution again yields the results (33) and (34).
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7. EXTENSIONS

We consider three possible directions in which the results of Theorems 1-5 may be
extended. Wriiing y, = u + 2*3‘:—3 as in (2), we may attempt to weaken our assumptions
on: (i) the asymptotic form of ¢j for large 3; (ii) the distribution of the a.;
(ii1) the dependence structure of the a,.

As Rosenblatt (1979) remarks in a similar context, Theorems 1, 3(i) and 5(i) can be
genera’ized, without any essential change in the proof, to the case in which Yk ~ x7%L(x)

where L 1is a slowly varying function and the normalization n“L(n) replaces .

Theorems 3(iii) and 5(iii) remain true when Yk ~ k-aL(k), and with the same n’/2
normalization. A possibility for further research is to consider the extension of Theorems
3 and 5 to seasonal long-memory processes gsuch as the seasonal ARIMA(0,d,0) process

(1 - B’)dyt = a, where & is an integer and 0 < & < .

The assumption of Normality of (at} in Theorems 3 and S for 0 < a <% seems

:m < ® it does not seem

unnecessarily strict. If {Yt} satisfies (2) and (3) with Ea
difficult to show that, in the notation of Theorem 3, Ec: * K. A8 nso for
r=1,...,m¢ This would imply that condition (4d4) could be weakened to (4c) without
affecting the validity of Theorems 3 and 5, However, since the asymptotic distributions
of ¢ and ry when 0 < a< EQ do not involve any higher moments of a, than the
variance, one might expect that these limiting distributions could be obtained under no
stronger an assumption on the distribution of a, than (4a).

The asgumption that the a, in (2) are independent can be relaxed in certain
circumstances, notably in Theorems 2-5 when v&< ®a < 1 (Hannan and Heyde 1972, Hannan

1976)., Similar extensions may be entertained for our other results and their

generalizations suggested in this section.
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APPENDIX. PROOF OF THFOREM 18.6.5 OF IBRAGIMOV AND LINNIK (1971). S
Theorem 18.6.5 of Ibragimov and Linnik (1971, p. 359) is as follows. Let {xj) be a Lo

sequence of independent, identically distributed random variables with EX, = 0, Ex: <o,

and let -
-
Y, = ) -
3 % L kg™ .
. @
where -
~ 2 '-
) <=, .
k= e ck '-
2 2 -
If O =EY + ... +Y)" +® ag n+ e, then o

z
pri(y, + ... + ¥ )/0 < z} » (2m)” 12 | exp(- % uz)d“ .
-

The first stage of Ibragimov and Linnik's proof is to let Cx,n ™ Ck=1 * e * Oy

so that

- R
02 - 1 2
n km—te ck I3} 4 . : .

and show that Sk n/on tends to zero uniformly in kx as n + ®», It is this part of the
’

proof which is in error: equations (18.6.14)-(18.6.16) are all incorrect. A correct proof

runs as follows.

We have cj,n - cj-l,n = cj_1 - cj-n-‘l' 80

2 2 2
,n (cj_‘ - cj_n_1) + 2(c:‘_1 cj-n—‘l)cj-hn + S4=1,n * (A.1)
- _1
Applying (A.1) k times we have
k=1 k-1
2 - 2 2
gy T 120 (€4eiet = C4ejon-q) * 2 150 (Cyeier 7 S4=ion=1"%4-1-1,n * S4-k,n

- -
2 : .
< § (e, -c ¥+ 2 ) lte, = ¢, e, | +¢ - N
{mem i i-n fometn i i-n" "i,n j=k,n ®
. 9
. T
i.~\ ‘|
R
S
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. @
<4 2ci+2{i (e, - ci_n)zi ci n}1/2+c§_k‘n FRRE
i 1 i ' —~ @
-2 - 211/2 2
<4 2 € * Ban(l ci) * cj-k,n L.
i i :
where the last two steps are both applications of Cauchy's inequality. Thus - ‘i-
cz I
_den ¢ 4 -2 2, 8 =1y 24172 . o2 2 . .2 <
2 o z e, a (% ci) cj-k,nlan (A.2) .o
n . .j. _.'-
In (A.2) we may choose k so that cg_k n/O: is arbitrarily small, and this yields o
’
1S 221 -1 v 2172
< - = + - = ) -
|cj,n|/°n a [Ban {(iz- ci) 5 % 1}_. ci] ' (A.3)
|
in which a, + 0 as n * ®. Equations (A.1), (A.2) and (A.3) are the corrected versions RS
of Ibragimov and Linnik's (18.6.15), (18.6.16) and (18.6.14). : ..‘
Now defining a n - ck’“/cvn (not &, n " S,n as stated by Ibragimov and Linnik),
* the remainder of Ibragimov and Linnik's proof may be followed to obtain the final result. . '
- .:
<
.0
— L
: .
‘ e
3 ..
b .
h K
3 -
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